Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
Phytopathology ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723149

ABSTRACT

Wheat blast caused by Pyricularia oryzae pathotype Triticum has spread to Asia (Bangladesh) and Africa (Zambia) from the endemic region of South America. Wheat varieties with durable resistance are needed, but very limited resistance resources are currently available. After screening tetraploid wheat accessions, we found an exceptional accession St19 (Triticum dicoccum, KU-114). Primary leaves of St19 were resistant not only to Brazilian isolate Br48 (a carrier of the type eI of AVR-Rmg8) but also to Br48ΔA8, an AVR-Rmg8 disruptant of Br48, even at 30℃, suggesting that the resistance of St19 is tolerant to high temperature and controlled by gene(s) other than Rmg8. When F2 population derived from a cross between St19 and St30 (a susceptible accession of T. paleocolchicum, KU-191) was inoculated with Br48, resistant and susceptible seedlings segregated in a 3:1 ratio, indicating that resistance of St19 is conferred by a single gene. We designated this gene as Rmg11. Molecular mapping revealed that the RMG11 locus is located on the short arm of chromosome 7A. Rmg11 is effective not only against other two Brazilian isolates (Br5 and Br116.5) but also against Bangladeshi isolates (T-108 and T-109) at the seedling stages. At the heading stages, lines containing Rmg11 were highly susceptible to the Bangladeshi isolates but moderately resistant to the Brazilian isolates. Stacking of Rmg11 with Rmg8 and the 2NS segment is highly recommended to achieve durable wheat blast resistance.

2.
Support Care Cancer ; 32(5): 326, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700725

ABSTRACT

PURPOSE: This study aimed to explore levels of adherence to dietary guidelines, and factors associated with dietary guideline adherence, among rural Australian cancer survivors. METHODS: A cross-sectional study was undertaken. We recruited a convenience sample of adults with cancer who attended the chemotherapy day unit or allied health appointments at a rural hospital in Baw Baw Shire, Victoria, Australia, between August 2017 and December 2021. Dietary guideline adherence was assessed by cross-referencing participants' responses to an adapted version of the Dietary Questionnaire for Epidemiological Studies with dietary recommendations in Australian dietary guidelines. Binary logistic regression was used to assess factors associated with dietary guideline adherence for fruits and whole red meats. RESULTS: There were 107 rural cancer survivors (median age, 67 years). Dietary guideline adherence was highest for alcohol (88%) followed by whole red meats (63%), fruits (56%), processed red meats (24%), cereals/breads/grains (7%), and vegetables (4%). Relative to those aged < 65 years, 65-74-year-olds had 5.7-fold greater odds (adjusted odds ratio (aOR) = 5.74, 95% confidence interval (CI) = 1.91-17.17) of adhering to the dietary guideline for fruits. Relative to those who had completed/ceased treatment, participants who were currently receiving treatment had 78% lower odds (aOR = 0.22, 95% CI = 0.09-0.59) of adhering to the dietary guideline for fruits. CONCLUSION: This study contributes preliminary data on adherence to dietary guidelines and associated factors among rural Australian cancer survivors. Dietary guideline adherence varied across food groups and was mostly low, albeit not markedly worse than Australia's national population for the fruits and vegetables groups. The mostly low adherence in our sample suggests a potential need to increase provision of dietary information, supportive care screening, and, wherever necessary, dietetics referrals, assessments, and interventions among rural cancer survivors. Larger, longitudinal studies of adherence to dietary guidelines and/or tailored, cancer-specific dietary recommendations should be undertaken in future.


Subject(s)
Cancer Survivors , Nutrition Policy , Rural Population , Humans , Cross-Sectional Studies , Male , Female , Cancer Survivors/statistics & numerical data , Cancer Survivors/psychology , Aged , Middle Aged , Rural Population/statistics & numerical data , Neoplasms , Adult , Victoria , Guideline Adherence/statistics & numerical data , Patient Compliance/statistics & numerical data , Surveys and Questionnaires , Aged, 80 and over , Australia , Diet/statistics & numerical data
3.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739115

ABSTRACT

Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.


Subject(s)
Aeromonas , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Sepsis , Animals , Catfishes/microbiology , Vietnam/epidemiology , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/pathogenicity , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Humans , Sepsis/microbiology , Sepsis/veterinary , Sepsis/epidemiology , Fish Diseases/microbiology , Phylogeny , Genomics , Genome, Bacterial , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
4.
PLoS One ; 19(5): e0302822, 2024.
Article in English | MEDLINE | ID: mdl-38709783

ABSTRACT

Early neurological deterioration (END) is progressive neurological deterioration with an increase in NIHSS score of 2 points or more in the first 72 hours from the onset of acute ischemic stroke. END increases the risk of poor clinical outcomes at day 90 of ischemic stroke. We will study the frequency, predictors, and outcomes of patients with END in a case-control study at a comprehensive stroke centre in Vietnam. of the design is a descriptive observational study, longitudinal follow-up of patients with minor stroke hospitalized at the Stroke Center of Bach Mai Hospital from December 1, 2023, to December 1, 2024. Minor stroke patients characterized by NIHSS score ≤ 5 hospitalized within 24 hours of symptom onset will be recruited. The estimated END rate is about 30%, relative accuracy ε = 0.11, 95% reliability, expected 5% of patients lost data or follow-up, and an estimated sample size of 779 patients. This study will help determine the END rate in patients with minor stroke and related factors, thereby building a prognostic model for END. Our study determined the END rate in patients with minor stroke in Vietnam and also proposed risk factors for minor stroke management and treatment.


Subject(s)
Stroke , Humans , Vietnam/epidemiology , Stroke/epidemiology , Case-Control Studies , Male , Female , Prognosis , Risk Factors , Middle Aged , Aged , Longitudinal Studies , Follow-Up Studies , Severity of Illness Index
5.
Microbiology (Reading) ; 170(3)2024 04.
Article in English | MEDLINE | ID: mdl-38568202

ABSTRACT

Understanding the evolution of antibiotic resistance is important for combating drug-resistant bacteria. In this work, we investigated the adaptive response of Pseudomonas aeruginosa to ciprofloxacin. Ciprofloxacin-susceptible P. aeruginosa ATCC 9027, CIP-E1 (P. aeruginosa ATCC 9027 exposed to ciprofloxacin for 14 days) and CIP-E2 (CIP-E1 cultured in antibiotic-free broth for 10 days) were compared. Phenotypic responses including cell morphology, antibiotic susceptibility, and production of pyoverdine, pyocyanin and rhamnolipid were assessed. Proteomic responses were evaluated using comparative iTRAQ labelling LC-MS/MS to identify differentially expressed proteins (DEPs). Expression of associated genes coding for notable DEPs and their related regulatory genes were checked using quantitative reverse transcriptase PCR. CIP-E1 displayed a heterogeneous morphology, featuring both filamentous cells and cells with reduced length and width. By contrast, although filaments were not present, CIP-E2 still exhibited size reduction. Considering the MIC values, ciprofloxacin-exposed strains developed resistance to fluoroquinolone antibiotics but maintained susceptibility to other antibiotic classes, except for carbapenems. Pyoverdine and pyocyanin production showed insignificant decreases, whereas there was a significant decrease in rhamnolipid production. A total of 1039 proteins were identified, of which approximately 25 % were DEPs. In general, there were more downregulated proteins than upregulated proteins. Noted changes included decreased OprD and PilP, and increased MexEF-OprN, MvaT and Vfr, as well as proteins of ribosome machinery and metabolism clusters. Gene expression analysis confirmed the proteomic data and indicated the downregulation of rpoB and rpoS. In summary, the response to CIP involved approximately a quarter of the proteome, primarily associated with ribosome machinery and metabolic processes. Potential targets for bacterial interference encompassed outer membrane proteins and global regulators, such as MvaT.


Subject(s)
Ciprofloxacin , Pseudomonas Infections , Humans , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa/genetics , Chromatography, Liquid , Proteomics , Pyocyanine , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology
6.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38571319

ABSTRACT

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Subject(s)
Acetaldehyde , DNA Damage , DNA Repair , Homologous Recombination , Acetaldehyde/toxicity , Humans , Homologous Recombination/drug effects , Homologous Recombination/genetics , DNA Repair/drug effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line
7.
Angew Chem Int Ed Engl ; : e202403263, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657031

ABSTRACT

Hierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron-based powder X-ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence-defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.

8.
Heliyon ; 10(7): e28118, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596094

ABSTRACT

In this study, a series of secondary metabolites from Ganoderma sp. were screened against Staphylococcus aureus protein targets, including as phosphotransacetylase, clumping factor A, and dihydrofolate reductase, using molecular docking simulations. The chemicals that showed the strongest binding energy with the targeted proteins were ganodermanontriol, lucidumol B, ganoderic acid J, ergosterol, ergosterol peroxide, 7-oxoganoderic acid Z, ganoderic acid AM1, ganosinoside A, ganoderic acid D, and 24R-ergosta-7,2E-diene-3ß,5α,6ß-triol. Interestingly, ganosinoside A showed the greatest affinity for the protein clumping factor A, a result validated by molecular dynamic simulation. Additionally, three natural Ganoderma sp. Strains as Ganoderma lingzhi VNKKK1903, Ganoderma lingzhi VNKK1905A2, and Amauroderma subresinosum VNKKK1904 were collected from Kon Ka Kinh National Park in central land of Vietnam and evaluated for their antibacterial activity against Staphylococcus aureus using an agar well diffusion technique. These results suggest that the fungal extracts and secondary metabolites may serve as valuable sources of antibiotics against Staphylococcus aureus. These findings provided an important scientific groundwork for further exploration of the antibacterial mechanisms of compounds derived from Ganoderma sp. in future research.

9.
Sci Data ; 11(1): 321, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548727

ABSTRACT

Flexible bronchoscopy has revolutionized respiratory disease diagnosis. It offers direct visualization and detection of airway abnormalities, including lung cancer lesions. Accurate identification of airway lesions during flexible bronchoscopy plays an important role in the lung cancer diagnosis. The application of artificial intelligence (AI) aims to support physicians in recognizing anatomical landmarks and lung cancer lesions within bronchoscopic imagery. This work described the development of BM-BronchoLC, a rich bronchoscopy dataset encompassing 106 lung cancer and 102 non-lung cancer patients. The dataset incorporates detailed localization and categorical annotations for both anatomical landmarks and lesions, meticulously conducted by senior doctors at Bach Mai Hospital, Vietnam. To assess the dataset's quality, we evaluate two prevalent AI backbone models, namely UNet++ and ESFPNet, on the image segmentation and classification tasks with single-task and multi-task learning paradigms. We present BM-BronchoLC as a reference dataset in developing AI models to assist diagnostic accuracy for anatomical landmarks and lung cancer lesions in bronchoscopy data.


Subject(s)
Bronchoscopy , Lung Neoplasms , Humans , Artificial Intelligence , Lung Neoplasms/diagnostic imaging , Thorax/diagnostic imaging , Anatomic Landmarks/diagnostic imaging
10.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38466092

ABSTRACT

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Tuberculosis, Multidrug-Resistant , Adult , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/cerebrospinal fluid , Mycobacterium tuberculosis/genetics , Pyrazinamide , Sensitivity and Specificity , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology , Cerebrospinal Fluid , Microbial Sensitivity Tests
11.
J Clin Tuberc Other Mycobact Dis ; 35: 100431, 2024 May.
Article in English | MEDLINE | ID: mdl-38523706

ABSTRACT

Objective: We conducted a descriptive analysis of multi-drug resistant tuberculosis (MDR-TB) in Vietnam's two largest cities, Hanoi and Ho Chi Minh city. Methods: All patients with rifampicin resistant tuberculosis were recruited from Hanoi and surrounding provinces between 2020 and 2022. Additional patients were recruited from Ho Chi Minh city over the same time period. Demographic data were recorded from all patients, and samples collected, cultured, whole genome sequenced and analysed for drug resistance mutations. Genomic susceptibility predictions were made on the basis of the World Health Organization's catalogue of mutations in Mycobacterium tuberculosis associated with drug resistance, version 2. Comparisons were made against phenotypic drug susceptibility test results where these were available. Multivariable logistic regression was used to assess risk factors for previous episodes of tuberculosis. Results: 233/265 sequenced isolates were of sufficient quality for analysis, 146 (63 %) from Ho Chi Minh City and 87 (37 %) from Hanoi. 198 (85 %) were lineage 2, 20 (9 %) were lineage 4, and 15 (6 %) were lineage 1. 17/211 (8 %) for whom HIV status was known were infected, and 109/214 (51 %) patients had had a previous episode of tuberculosis. The main risk factor for a previous episode was HIV infection (odds ratio 5.1 (95 % confidence interval 1.3-20.0); p = 0.021). Sensitivity for predicting first-line drug resistance from whole genome sequencing data was over 90 %, with the exception of pyrazinamide (85 %). For moxifloxacin and amikacin it was 50 % or less. Among rifampicin-resistant isolates, prevalence of resistance to each non-first-line drug was < 20 %. Conclusions: Drug resistance among most MDR-TB strains in Vietnam's two largest cities is confined largely to first-line drugs. Living with HIV is the main risk factor among patients with MDR-TB for having had a previous episode of tuberculosis.

12.
JCO Precis Oncol ; 8: e2300289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412387

ABSTRACT

PURPOSE: Cell-free circulating tumor DNA (ctDNA) has shown its potential as a quantitative biomarker for longitudinal monitoring of response to anticancer therapies. However, ctDNA dynamics have not been studied in patients with heavily pretreated, advanced solid tumors, for whom therapeutic responses can be weak. We investigated whether changes in ctDNA could predict clinical outcomes in such a cohort treated with combined poly(ADP-ribose) polymerase/vascular endothelial growth factor receptor inhibitor therapy. MATERIALS AND METHODS: Patients with metastatic pancreatic ductal adenocarcinoma (PDAC), triple-negative breast cancer (TNBC), small-cell lung cancer (SCLC), or non-small-cell lung cancer (NSCLC) received up to 7 days of cediranib 30 mg orally once daily monotherapy lead-in followed by addition of olaparib 200 mg orally twice daily. Patients had progressed on a median of three previous lines of therapy. Plasma samples were collected before and after cediranib monotherapy lead-in and on combination therapy at 7 days, 28 days, and every 28 days thereafter. ctDNA was quantified from plasma samples using a multigene mutation-based assay. Radiographic assessment was performed every 8 weeks. RESULTS: ctDNA measurements were evaluable in 63 patients. The median baseline ctDNA variant allele fractions (VAFs) were 20%, 28%, 27%, and 34% for PDAC, TNBC, SCLC, and NSCLC, respectively. No association was observed between baseline VAF and radiographic response, progression-free survival, or overall survival (OS). Similarly, no association was found between ctDNA decline and radiographic response or survival. However, an increase in ctDNA at 56 days of combination therapy was associated with disease progression and inferior OS in a landmark analysis. CONCLUSION: ctDNA levels or dynamics did not correlate with radiographic response or survival outcomes in patients with advanced metastatic malignancies treated with olaparib and cediranib.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Pancreatic Neoplasms , Triple Negative Breast Neoplasms , Humans , Circulating Tumor DNA/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Poly(ADP-ribose) Polymerases/therapeutic use , Vascular Endothelial Growth Factor A/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics
13.
Nat Prod Res ; : 1-5, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38400522

ABSTRACT

Phytochemical investigation of the trunks from Gnetum latifolium led to the isolation of a novel phenolic glucoside, 2E-2,4-di-(3,4-dihydroxyphenyl)but-2-en-1-yl-O-ß-D-glucopyranoside (1), along with five known stilbene derivatives (2-6). Their structures were determined mainly using high-resolution electrospray ionisation mass spectrometry and nuclear magnetic resonance spectroscopic analyses, followed by comparisons of observed spectral data with reported values. The novel compound 1 in G. latifolium was found to be useful as a chemotaxonomic marker. Biological evaluation revealed that compound 6 had remarkable inhibitory effects on nitric oxide production, with a half-maximal inhibitory concentration (IC50) value of 4.85 ± 0.20 µM, which was much higher than that of the positive control dexamethasone (IC50 = 14.20 ± 0.54 µM).

14.
Anal Methods ; 16(8): 1150-1157, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323529

ABSTRACT

The gold standard for nucleic acid amplification-based diagnosis is the polymerase chain reaction (PCR). The PCR recognizes the targets such as foodborne pathogens by amplifying their specific genes. The integration of nucleic acid amplification-based assays on microfluidic platforms represents a highly promising solution for convenient, cheap, and effective control of foodborne pathogens. However, the application of the PCR is limited to on-site detection because the method requires sophisticated equipment for temperature control, which makes it complicated for microfluidic integration. Alternatively, isothermal amplification methods are promising tools for integrating microfluidic platforms for on-site detection of foodborne pathogens. This review summarized advances in isothermal amplification-based microfluidic devices for detecting foodborne pathogens. Different nucleic acid extraction approaches and the integration of these approaches in microfluidic platforms were first reviewed. Microfluidic platforms integrated with three common isothermal amplification methods including loop-mediated isothermal amplification, recombinase polymerase amplification, and recombinase-aided amplification were then described and discussed.


Subject(s)
Microfluidic Analytical Techniques , Nucleic Acids , Microfluidics , Nucleic Acids/analysis , Lab-On-A-Chip Devices , Recombinases
15.
Case Rep Dermatol Med ; 2024: 6748340, 2024.
Article in English | MEDLINE | ID: mdl-38404530

ABSTRACT

Pemphigus foliaceus is an uncommon autoimmune intraepidermal blistering disease characterized by immunoglobulin (Ig) G autoantibodies that attack desmoglein-1 in the epidermis. There are two predominant forms of pemphigus foliaceus, sporadic and endemic. Sporadic pemphigus foliaceus is known to be more prevalent in middle-aged and elderly people and to be extremely rare in children. Less than 40 nonendemic pediatric pemphigus foliaceus cases have been documented in the literature. This report documents a case of sporadic pemphigus foliaceus in a 3-year-old Vietnamese girl who presented with generalized scaling and crusted erosions over the body.

16.
Food Res Int ; 176: 113799, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163712

ABSTRACT

Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.


Subject(s)
Metals, Heavy , Pesticides , Humans , Microfluidics , Food Safety , Food Contamination/prevention & control , Food Contamination/analysis , Pesticides/analysis , Metals, Heavy/analysis
17.
Environ Sci Pollut Res Int ; 31(5): 7556-7568, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165546

ABSTRACT

Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pentanols , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Plant Stomata , Signal Transduction , Abscisic Acid/metabolism
18.
Plant Cell Physiol ; 65(2): 199-215, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37951591

ABSTRACT

Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.


Subject(s)
Arabidopsis , Hypocreales , Arabidopsis/genetics , Copper/pharmacology , Copper/metabolism , Limonene/metabolism , Limonene/pharmacology , Hypocreales/metabolism , Plants/metabolism , Seedlings/metabolism , Gene Expression Regulation, Plant
19.
Microorganisms ; 11(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38004769

ABSTRACT

African swine fever (ASF) emerged in domestic pigs and wild boars in China in 2018 and rapidly spread to neighboring Asian countries. Currently, no effective vaccine or diagnostic tests are available to prevent its spread. We developed a robust quadruple recombinant-protein-based indirect enzyme-linked immunosorbent assay (QrP-iELISA) using four antigenic proteins (CD2v, CAP80, p54, and p22) to detect ASF virus (ASFV) antibodies and compared it with a commercial kit (IDvet) using ASFV-positive and -negative serum samples. The maximum positive/negative value was 24.033 at a single antigen concentration of 0.25 µg/mL and quadruple ASFV antigen combination of 1 µg/mL at a 1:100 serum dilution. Among 70 ASFV-positive samples, 65, 67, 65, 70, 70, and 14 were positive above the cut-offs of 0.121, 0.121, 0.183, 0.065, 0.201, and 0.122, for CD2v, CAP80, p54, p22-iELISA, QrP-iELISA, and IDvet, respectively, with sensitivities of 92.9%, 95.7%, 92.9%, 100%, 100%, and 20%, respectively, all with 100% specificity. The antibody responses in QrP-iELISA and IDvet were similar in pigs infected with ASFV I. QrP-iELISA was more sensitive than IDvet for early antibody detection in pigs infected with ASFV II. These data provide a foundation for developing advanced ASF antibody detection kits critical for ASF surveillance and control.

20.
Plant Mol Biol ; 113(4-5): 143-155, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37985583

ABSTRACT

Microbial volatile compounds (mVCs) may cause stomatal closure to limit pathogen invasion as part of plant innate immune response. However, the mechanisms of mVC-induced stomatal closure remain unclear. In this study, we co-cultured Enterobacter aerogenes with Arabidopsis (Arabidopsis thaliana) seedlings without direct contact to initiate stomatal closure. Experiments using the reactive oxygen species (ROS)-sensitive fluorescent dye, H2DCF-DA, showed that mVCs from E. aerogenes enhanced ROS production in guard cells of wild-type plants. The involvement of ROS in stomatal closure was then demonstrated in an ROS production mutant (rbohD). In addition, we identified two stages of signal transduction during E. aerogenes VC-induced stomatal closure by comparing the response of wild-type Arabidopsis with a panel of mutants. In the early stage (3 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and receptor-like kinase THESEUS1 mutant (the1-1) but not in rbohD, plant hormone-related mutants (nced3, erf4, jar1-1), or MAPK kinase mutants (mkk1 and mkk3). However, in the late stage (24 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and rbohD but not in nced3, erf4, jar1-1, the1-1, mkk1 or mkk3. Taken together, our results suggest that E. aerogenes mVC-induced plant immune responses modulate stomatal closure in Arabidopsis by a multi-phase mechanism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Abscisic Acid/pharmacology , Reactive Oxygen Species , Plant Stomata/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...